• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Zinc-iron alloy; anomalous electrodeposition; texture; morphology.

    • Abstract


      Zinc-iron alloy electrodeposits have industrial significance, since they provide better corrosion resistance and with improved mechanical properties when compared to pure zinc coatings. This is due to the unique phase structure of the alloy formed. But this deposition belongs to anomalous deposition, where the electrochemically less noble zinc deposits more preferentially, than the more noble iron. So the industrial process control over the deposition becomes difficult. So, this study correlates the effect of various deposition parameters over the deposition kinetics and deposited alloy characteristics. Transition and partial current densities were computed. Effect of hydrogen overpotential and surface coverage due to the adsorbed intermediates over anomalous deposition were explored. Plausible deposition mechanism and mathematical model was proposed to predict the anomalous electrodeposition characteristics. Textural, morphological and phase structural characteristics of the alloy was investigated. By the substitution of iron in the hcp lattice, c/a ratio was lowered and the lattice geometry was distorted. Intermetallic compounds of variable composition such as FeZn14, Fe5Zn33, Fe3Zn13 and FeZn3 with `𝜂' and `𝛤' phase structures were noted. Electrodeposition parameters were optimized and smooth, adherent, strain-free deposits with required iron content and hardness were obtained.

    • Author Affiliations


      M Kanagasabapathy1 Sobha Jayakrishnan2

      1. Department of Chemistry, Rajapalayam Rajus’ College, Affiliated to Madurai Kamaraj University, Rajapalayam 626 117, India
      2. EMFT Division, Central Electrochemical Research Institute, (Council of Scientific and Industrial Research), Karaikudi 630 003, India
    • Dates

  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.