• Kinetics and mechanism of the reactions of hexaaqua rhodium (III) with sulphur (IV) in aqueous medium

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Rhodium-sulphur complexes; intramolecular ligand isomerisation; sulphite-bridged complexes

    • Abstract


      An O-bonded sulphito complex, Rh(OH2)5(OSO2H)2+, is reversibly formed in the stoppedflow time scale when Rh(OH2)63+ and SO2/HSO3 buffer (1 <pH< 3) are allowed to react. For Rh(OH2)5OH2++ SO2 □ Rh(OH2)5(OSO2H)2+ (k1/k-1), k1 = (2.2 ±0.2) × 103 dm3 mol−1 s−1, k1 = 0.58 ±0.16 s−1 (25°C,I = 0.5 mol dm−3). The protonated O-sulphito complex is a moderate acid (Kd = 3 × 10−4 mol dm−3, 25°C, I= 0.5 mol dm−3). This complex undergoes (O, O) chelation by the bound bisulphite withk= 1.4 × 10−3 s−1 (31°C) to Rh(OH2)4(O2SO)+ and the chelated sulphito complex takes up another HSO3 in a fast equilibrium step to yield Rh(OH2)3(O2SO)(OSO2H) which further undergoes intramolecular ligand isomerisation to the S-bonded sulphito complex: Rh(OH2)3(O2SO)(OSO2)- → Rh(OH2)3(O2SO)(SO3) (kiso = 3 × 10−4 s−1, 31°C). A dinuclear (μ-O, O) sulphite-bridged complex, Na4[Rh2(μ-OH)2(OH)2(μ-OS(O)O)(O2SO)(SO3) (OH2)]5H2O with (O, O) chelated and S-bonded sulphites has been isolated and characterized. This complex is sparingly soluble in water and most organic solvents and very stable to acid-catalysed decomposition

    • Author Affiliations


      Suprava Nayak1 Anadi C Dash1

      1. Department of Chemistry, Utkal University, Bhubaneswar - 751 004, India
    • Dates

  • Journal of Chemical Sciences | News

© 2021-2022 Indian Academy of Sciences, Bengaluru.