Catalytic and structural effects of flexible loop deletion in organophosphorus hydrolase enzyme: A thermostability improvement mechanism
GHOLAMREZA FARNOOSH KHOSRO KHAJEH MOZAFAR MOHAMMADI KAZEM HASSANPOUR ALI MOHAMMAD LATIFI HOSSEIN AGHAMOLLAEI
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/jbsc/045/0054
Thermostability improvement of enzymes used industrially or commercially would develop their capacity andcommercial potential due to increased enzymatic competence and cost-effectiveness. Several stabilizing factorshave been suggested to be the base of thermal stability, like proline replacements, disulfide bonds, surface looptruncation and ionic pair networks creation. This research evaluated the mechanism of increasing the rigidity oforganophosphorus hydrolase enzyme by flexible loop truncation. Bioinformatics analysis revealed that themutated protein retains its stability after loop truncation (five amino acids deleted). The thermostability of thewild-type (OPH-wt) and mutated (OPH-D5) enzymes were investigated by half-life, DGi, and fluorescence andfar-UV CD analysis. Results demonstrated an increase half-life and DGi in OPH-D5 compared to OPH-wt.These results were confirmed by extrinsic fluorescence and circular dichroism (CD) spectrometry experiments,therefore, as rigidity increased in OPHD5 after loop truncation, half-life and DGi also increased. Based onthese findings, a strong case is presented for thermostability improvement of OPH enzyme by flexible looptruncation after bioinformatics analysis.
GHOLAMREZA FARNOOSH1 KHOSRO KHAJEH2 MOZAFAR MOHAMMADI1 KAZEM HASSANPOUR3 ALI MOHAMMAD LATIFI1 HOSSEIN AGHAMOLLAEI4
Volume 45, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.