Glyoxal modification mediates conformational alterations in silk fibroin: Induction of fibrillation with amyloidal features
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/jbsc/045/0032
Silkwormsilk protein fibroin is widely exploited to develop novel silk-based biomaterials due to its stable b-sheetstructure, providing high crystallinity and tensile strength. The polymorphic behaviour of silk fibroin provides awindow to modulate its structural transitions during self-assembly for different functional outcomes. Most studiesare therefore mainly focused on formation of well-developed beta-sheet structure and self-assembly of silk fibroinwhich are regulated by many parameters. Glyoxal, a highly reactive alpha-oxoaldehyde, reacts with different proteinsto form advanced glycation end products (AGEs) following Maillard-like reaction. Considering the significanceof protein modification by glyoxal-derived AGEs, in the present study the effect of glyoxal (250, 500 and1000 micro-M) on the structure of silk fibroin has been investigated. CD and fluorescence studies reveal that higherconcentrations of the a-oxoaldehyde induce considerable alterations of secondary and tertiary structure of theprotein leading to aggregation following incubation with for 3 weeks. The aggregates exhibit fibrillar morphologywith amyloidal nature as evident from SEM, FTIR and XRD experiments. The findings highlight that glycationinducedmodification can be a possible approach for modulating the conformation of the silk protein which may berelevant in connection to clinical, biomedical or synthetic biology based applications.
Volume 45, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.