• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jbsc/037/05/0857-0870

    • Keywords

       

      Flowering time; functional DNA variation; genome duplication; photoperiod; QTL; soybean

    • Abstract

       

      Soybean genome sequences were blasted with Arabidopsis thaliana regulatory genes involved in photoperiod-dependent flowering. This approach enabled the identification of 118 genes involved in the flowering pathway. Two genome sequences of cultivated (Williams 82) and wild (IT182932) soybeans were employed to survey functional DNA variations in the flowering-related homologs. Forty genes exhibiting nonsynonymous substitutions between G. max and G. soja were catalogued. In addition, 22 genes were found to co-localize with QTLs for six traits including flowering time, first flower, pod maturity, beginning of pod, reproductive period, and seed filling period. Among the genes overlapping the QTL regions, two LHY/CCA1 genes, GI and SFR6 contained amino acid changes. The recently duplicated sequence regions of the soybean genome were used as additional criteria for the speculation of the putative function of the homologs. Two duplicated regions showed redundancy of both flowering-related genes and QTLs. ID 12398025, which contains the homeologous regions between chr 7 and chr 16, was redundant for the LHY/CCA1 and SPA1 homologs and the QTLs. Retaining of the CRY1 gene and the pod maturity QTLs were observed in the duplicated region of ID 23546507 on chr 4 and chr 6. Functional DNA variation of the LHY/CCA1 gene (Glyma07g05410) was present in a counterpart of the duplicated region on chr 7, while the gene (Glyma16g01980) present in the other portion of the duplicated region on chr 16 did not show a functional sequence change. The gene list catalogued in this study provides primary insight for understanding the regulation of flowering time and maturity in soybean.

    • Author Affiliations

       

      Moon Young Kim1 Jin Hee Shin1 Yang Jae Kang1 Sang Rea Shim1 Suk-Ha Lee1 2

      1. Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
      2. Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
    • Dates

       
  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.