• Neonatal intramuscular injection of plasmid encoding glucagon-like peptide-1 affects anxiety behaviour and expression of the hippocampal glucocorticoid receptor in adolescent rats

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jbsc/035/01/0063-0071

    • Keywords

       

      Behaviour; DNA methylation; GLP-1; GR; hippocampus; NGFI-A

    • Abstract

       

      Early-life endocrine intervention may programme hippocampal glucocorticoid receptor (GR) expression and cause psychiatric disorders in later life. Glucagon-like peptide-1 (GLP-1) has been implicated in the regulation of neuroendocrine and behavioural responses, but it is yet to be determined whether and how neonatal GLP-1 overexpression may modify hippocampal GR expression and thus programme adolescent behaviour in rats. Two-dayold pups were injected intramuscularly with vacant plasmid (VP) or plasmid DNA encoding secretory GLP-1 (GP). Anxiety-related behaviour was assessed in the elevated plus maze (EPM) test at 8 weeks of age. Plasma corticosterone levels were measured with enzyme immunoassay (EIA). Protein and mRNA levels were determined by western blot and real-time polymerase chain reaction (PCR), respectively. The DNA methylation status of the GR exon 17 promoter was determined by bisulphate sequencing PCR (BSP). GP rats exhibited anxiolytic behaviour compared with their VP counterparts. Hippocampal GLP-1 receptor (GLP-1R) and GR mRNA expression were significantly elevated in GP rats without a significant difference in plasma corticosterone. Significant reduction in DNA methyltransferase 1 (DNMT1) expression was observed in GP rats disconnected with alterations in DNA methylation of the GR exon 17 promoter. Nevertheless, mRNA expression of nerve growth factor-inducible protein A (NGFI-A) was significantly elevated in GP rats. These results suggest that neonatal intramuscular injection of plasmid DNA encoding GLP-1 affects anxiety behaviour in adolescent rats, probably through NGFI-A-activated upregulation of hippocampal GR expression.

    • Author Affiliations

       

      Huitao Fan1 Lina Wang1 Feng Guo1 Shi Wei1 Ruqian Zhao1

      1. Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing 210095, P R China
    • Dates

       
  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.