• Cell volume regulation in the perfused liver of a freshwater air-breathing catfishClarias batrachus under aniso-osmotic conditions: Roles of inorganic ions and taurine

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Hypertonicity; hypotonicity; liver mass; regulatory volume decrease; regulatory volume increase; taurine

    • Abstract


      The roles of various inorganic ions and taurine, an organic osmolyte, in cell volume regulation were investigated in the perfused liver of a freshwater air-breathing catfishClarias batrachus under aniso-osmotic conditions. There was a transient increase and decrease of liver cell volume following hypotonic (-80 mOsmol/l) and hypertonic (+80 mOsmol/l) exposures, respectively, which gradually decreased/increased near to the control level due to release/ uptake of water within a period of 25–30 min. Liver volume decrease was accompanied by enhanced efflux of K+ (9.45 ± 0.54 µmol/g liver) due to activation of Ba2+- and quinidine-sensitive K+ channel, and to a lesser extent due to enhanced efflux of Cl- (4.35 ± 0.25 µmol/g liver) and Na+ (3.68 ± 0.37 µmol/g liver). Conversely, upon hypertonic exposure, there was amiloride- and ouabain-sensitive uptake of K+(9.78 ± 0.65 µmol/g liver), and also Cl- (3.72 ± 0.25 µmol/g liver). The alkalization/acidification of the liver effluents under hypo-/hypertonicity was mainly due to movement of various ions during volume regulatory processes. Taurine, an important organic osmolyte, appears also to play a very important role in hepatocyte cell volume regulation in the walking catfish as evidenced by the fact that hypo- and hyper-osmolarity caused transient efflux (5.68 ± 0.38 µmol/g liver) and uptake (6.38 ± 0.45 µmol/g liver) of taurine, respectively. The taurine efflux was sensitive to 4,4′-di-isothiocyanatostilbene-2,2′-disulphonic acid (DIDS, an anion channel blocker), but the uptake was insensitive to DIDS, thus indicating that the release and uptake of taurine during volume regulatory processes are unidirectional. Although the liver of walking catfish possesses the RVD and RVI mechanisms, it is to be noted that liver cells remain partly swollen and shrunken during anisotonic exposures, thereby possibly causing various volume-sensitive metabolic changes in the liver as reported earlier.

    • Author Affiliations


      Carina Goswami1 Nirmalendu Saha1

      1. Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong - 793 022, India
    • Dates

  • Journal of Biosciences | News

      Forthcoming Special issue.

    • To trigger further research on plant mitochondria, the Journal of Biosciences is bringing out a special issue titled "Plant Mitochondria: Properties and Interactions with Other Organelles".

      Plant mitochondria are quite distinct and have unique features, such as a cyanide-insensitive alternate pathway. They also interact with chloroplasts to optimize photosynthetic carbon assimilation.

      Submissions are welcome until 30 July 2023. The contributions can be original articles, short communications, reviews, or mini-reviews on any topic related to plant mitochondria.

      Authors can submit their articles online at https://www.editorialmanager.com/jbsc/default2.aspx

      Posted on April 12, 2023
    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.