• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jbsc/031/05/0565-0573

    • Keywords

       

      Adipose tissue; cDNA microarray; chicken; gene expression profile

    • Abstract

       

      The chicken is an important model organism that bridges the evolutionary gap between mammals and other vertebrates and provides a major protein source from meat and eggs throughout the world. Excessive accumulation of lipids in the adipose tissue is one of the main problems faced by the broiler industry nowadays. In order to visualize the mechanisms involved in the gene expression and regulation of lipid metabolism in adipose tissue, cDNA microarray containing 9 024 cDNA was used to construct gene expression profile and screen differentially expressed genes in adipose tissue between broilers and layers of 10 wk of age. Sixty-seven differentially expressed sequences were screened out, and 42 genes were found when blasted with the GenBank database. These genes are mainly related to lipid metabolism, energy metabolism, transcription and splicing factor, protein synthesis and degradation. The remained 25 sequences had no annotation available in the GenBank database. Furthermore, Northern blot and semi-quantitative RT-PCR were developed to confirm 4 differentially expressed genes screened by cDNA microarray, and it showed great consistency between the microarray data and Northern blot results or semi-quantitative RT-PCR results. The present study will be helpful for clarifying the molecular mechanism of obesity in chickens.

    • Author Affiliations

       

      Hongbao Wang1 Hui Li1 Qigui Wang1 Yuxiang Wang1 Huabin Han1 Hui Shi1

      1. College of Animal Science and Technology, Northeast Agricultural University, Harbin - 150030, PR China
    • Dates

       
  • Journal of Biosciences | News

      Forthcoming Special issue.


    • To trigger further research on plant mitochondria, the Journal of Biosciences is bringing out a special issue titled "Plant Mitochondria: Properties and Interactions with Other Organelles".


      Plant mitochondria are quite distinct and have unique features, such as a cyanide-insensitive alternate pathway. They also interact with chloroplasts to optimize photosynthetic carbon assimilation.


      Submissions are welcome until 30 July 2023. The contributions can be original articles, short communications, reviews, or mini-reviews on any topic related to plant mitochondria.


      Authors can submit their articles online at https://www.editorialmanager.com/jbsc/default2.aspx

      Posted on April 12, 2023
      <
    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.