Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA
Richard R Sinden Vladimir N Potaman Elena A Oussatcheva Christopher E Pearson Yuri L Lyubchenko Luda S Shlyakhtenko
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/jbsc/027/01/0053-0065
Fourteen genetic neurodegenerative diseases and three fragile sites have been associated with the expansion of (CTG)n•(CAG)n, (CGG)n•(CCG)n, or (GAA)n•(TTC)n repeat tracts. Different models have been proposed for the expansion of triplet repeats, most of which presume the formation of alternative DNA structures in repeat tracts. One of the most likely structures, slipped strand DNA, may stably and reproducibly form within triplet repeat sequences. The propensity to form slipped strand DNA is proportional to the length and homogeneity of the repeat tract. The remarkable stability of slipped strand DNA may, in part, be due to loop-loop interactions facilitated by the sequence complementarity of the loops and the dynamic structure of three-way junctions formed at the loop-outs.
Richard R Sinden1 Vladimir N Potaman1 Elena A Oussatcheva1 Christopher E Pearson1 2 Yuri L Lyubchenko1 3 Luda S Shlyakhtenko1 3
Volume 48, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.