• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Harderian gland; nasolacrimal duct; squamate reptiles; vomeronasal organ

    • Abstract


      The vomeronasal organ is a poorly understood accessory olfactory organ, present in many tetrapods. In mammals, amphibians and lepidosaurian reptiles, it is an encapsulated structure with a central, fluid-filled lumen. The morphology of the lubricatory system of the vomeronasal organ (the source of this fluid) varies among classes, being either intrinsic (mammalian and caecilian amphibian vomeronasal glands) or extrinsic (anuran and urodele nasal glands). In the few squamate reptiles thus far examined, there are no submucosal vomeronasal glands. In this study, we examined the vomeronasal organs of several species of Australian squamates using histological, histochemical and ultrastructural techniques, with the goal of determining the morphology of the lubricatory system in the vomeronasal organ. Histochemically, the fluid within the vomeronasal organ of all squamates is mucoserous, though it is uncertain whether mucous and serous constituents constitute separate components. The vomeronasal organ produces few secretory granules intrinsically, implying an extrinsic source for the luminal fluid. Of three possible candidates, the Harderian gland is the most likely extrinsic source of this secretion.

    • Author Affiliations


      Susan J Rehorek1 Bruce T Firth2 Mark N Hutchinson3

      1. Department of Biology, Slippery Rock University, Slippery Rock, PA 16057-1326, USA
      2. Department of Anatomical Sciences, University of Adelaide, Adelaide 5005, Australia
      3. Herpetology Section, South Australian Museum, Adelaide 5000, Australia
    • Dates

  • Journal of Biosciences | News

      Forthcoming Special issue.

    • To trigger further research on plant mitochondria, the Journal of Biosciences is bringing out a special issue titled "Plant Mitochondria: Properties and Interactions with Other Organelles".

      Plant mitochondria are quite distinct and have unique features, such as a cyanide-insensitive alternate pathway. They also interact with chloroplasts to optimize photosynthetic carbon assimilation.

      Submissions are welcome until 30 July 2023. The contributions can be original articles, short communications, reviews, or mini-reviews on any topic related to plant mitochondria.

      Authors can submit their articles online at https://www.editorialmanager.com/jbsc/default2.aspx

      Posted on April 12, 2023
    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.