• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jbsc/021/04/0497-0510

    • Keywords

       

      Primate; corpus luteum; hCG/dghCG; downregulation

    • Abstract

       

      The objective of the current study was to investigate the mechanism by which the corpus luteum (CL) of the monkey undergoes desensitization to luteinizing hormone following exposure to increasing concentration of human chorionic gonadotrophin (hCG) as it occurs in pregnancy. Female bonnet monkeys were injected (im) increasing doses of hCG or dghCG beginning from day 6 or 12 of the luteal phase for either 10 or 4 or 2 days. The day of oestrogen surge was considered as day ‘0’ of luteal phase. Luteal cells obtained from CL of these animals were incubated with hCG (2 and 200 pg/ml) or dbcAMP (2.5,25 and 100 M) for 3h at 37°C and progesterone secreted was estimated. Corpora lutea of normal cycling monkeys on day 10/16/22 of the luteal phase were used as controls. In addition thein vivo response to CG and deglycosylated hCG (dghCG) was assessed by determining serum steroid profiles following their administration. hCG (from 15–90 IU) but not dghCG (15-90 IU) treatment in vivo significantly (P < 0.05) elevated serum progesterone and oestradiol levels. Serum progesterone, however, could not be maintained at a elevated level by continuous treatment with hCG (from day 6–15), the progesterone level declining beyond day 13 of luteal phase. Administering low doses of hCG (15-90 IU/day) from day 6–9 or high doses (600 IU/day) on days 8 and 9 of the luteal phase resulted in significant increase (about 10-fold over corresponding control P < 0.005) in the ability of luteal cells to synthesize progesterone (incubated controls) in vitro. The luteal cells of the treated animals responded to dbcAMP (P < 0.05) but not to hCC added in vitro. The in vitro response of luteal cells to added hCG was inhibited by 0,50 and 100% if the animals were injected with low (15-90 IU) or medium (100 IU) between day 6–9 of luteal phase and high (600 IU on day 8 and 9 of luteal phase) doses of dghCG respectively; such treatment had no effect on responsivity of the cells to dbcAMP. The luteal cell responsiveness to dbcAMP in vitro was also blocked if hCG was administered for 10 days beginning day 6 of the luteal phase. Though short term hCG treatment during late luteal phase (from days 12—15) had no effect on luteal function, 10 day treatment beginning day 12 of luteal phase resulted in regain ofin vitro responsiveness to both hCG (P < 0.05) and dbcAMP (P < 0.05) suggesting that luteal rescue can occur even at this late stage. In conclusion, desensitization of the CL to hCG appears to be governed by the dose/period for which it is exposed to hCG/dghCG. That desensitization is due to receptor occupancy is brought out by the fact that (i) this can be achieved by giving a larger dose of hCG over a 2 day period instead of a lower dose of the hormone for a longer (4 to 10 days) period and (ii) the effect can largely be reproduced by using dghCG instead of hCG to block the receptor sites. It appears that to achieve desensitization to dbcAMP also it is necessary to expose the luteal cell to relatively high dose of hCG for more than 4 days

    • Author Affiliations

       

      N Selvaraj1 R Medhamurthy1 S G Ramachandra1 M R Sairam1 2 N R Moudgal1

      1. Primate Research Laboratory, Centre for Reproductive Biology and Molecular Endocrinology, Indian Institute of Science, Bangalore - 560012, India
      2. Reproduction Research Laboratory, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec - H2W 1R7, Canada
    • Dates

       
  • Journal of Biosciences | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.