• Differential scanning calorimetric studies of native and freeze-damaged very low density lipoproteins in hen’s egg yolk plasma

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jbsc/011/01-04/0299-0309

    • Keywords

       

      Differential scanning calorimetry; very low density lipoproteins; egg yolk plasma lipids

    • Abstract

       

      Lipid thermal transition patterns of the very low density lipoproteins in native and variously treated egg yolk plasma and extracted total very low density lipoproteins lipids have been recorded by differential scanning calorimetry in the temperature range 220–300 K, after lowering the freeze endotherm of free water in the sample with ethylene glycol.

      Three distinguishable patterns of lipid endotherms, designated types 1, 2 and 3 were obtained, respectively, from (i) native very low density lipoproteins in egg yolk plasma, (ii) freeze damaged very low density lipoproteins in gelled egg yolk plasma and (iii) extracted total lipids of very low density lipoproteins dispersed in water. Protein-depleted ‘lipid core’ particles of very low density lipoproteins obtained by exhaustive proteolysis of egg yolk plasma gave type 2 lipid transition pattern suggesting similarities in its lipid association with that of the freeze damaged very low density lipoproteins. Freezing the ‘lipid cores’ of very low density lipoproteins led to phase separation and gave type 3 lipid transition pattern of water-dispersed, phase-separated total very low density lipoprotein lipids. Relative heat uptake of native very low density lipoproteins in egg yolk plasma was about 15% lower than the freeze damaged sample or of the extracted total lipids.

      Treatments which prevented aggregation and gelation of very low density lipoproteins in egg yolk plasma during frozen storage, namely with additives such as glycerol or NaCl, gave subsequent lipid transition pattern intermediate between type 1 and 2, indicating that while very low density lipoprotein aggregation is prevented, additives do not altogether prevent changes in lipid association in these particles.

    • Author Affiliations

       

      S Mahadevan1

      1. Department of Biochemistry, Indian Institute of Science, Bangalore - 560 012, India
    • Dates

       
  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.