• Stabilisation of some of the protein synthesis components in the thermophilic fungus,Humicola lanuginosa

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Thermophilic fungus; stabilisation of synthetase; rate of protein turnover; Humicola lanuginosa

    • Abstract


      The thermal stabilities of tRNA from the thermophilic fungus,Humicola lanuginose were compared with that from the mesophilic yeast,Candida utilis, by measuring the increase in the optical density with temperature. tRNAs from both the species were stable in the presence of millimolar quantities of magnesium chloride upto 50°C, the optimum growth temperature of the fungus. Aminoacyl tRNA synthetases were maximally active at 40°C under thein vitro assay conditions. They were fractionated and one species of valine tRNA synthetase was purified to homogeneity. The purified enzyme was protected against inactivation to varying degrees when preincubated with the substrates valine, tRNA and ATP as well as spermine. Protein turnover studies showed that the rate of turnover was higher at higher temperatures. It was concluded from these results that the protein synthesizing machinery of this fungus has no intrinsic stability but it is stabilised by intracellular factors. Higher rate of protein turnover also plays a role for growth at higher temperature.

    • Author Affiliations


      Anil K Joshi1 2 Joseph D Cherayil1

      1. Department of Biochemistry, Indian Institute of Science, Bangalore - 560012, India
      2. Department of Biochemistry, University of California, Berkeley, California - 94720, USA
    • Dates

  • Journal of Biosciences | News

      Forthcoming Special issue.

    • To trigger further research on plant mitochondria, the Journal of Biosciences is bringing out a special issue titled "Plant Mitochondria: Properties and Interactions with Other Organelles".

      Plant mitochondria are quite distinct and have unique features, such as a cyanide-insensitive alternate pathway. They also interact with chloroplasts to optimize photosynthetic carbon assimilation.

      Submissions are welcome until 30 July 2023. The contributions can be original articles, short communications, reviews, or mini-reviews on any topic related to plant mitochondria.

      Authors can submit their articles online at https://www.editorialmanager.com/jbsc/default2.aspx

      Posted on April 12, 2023
    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.