• Non-identity of reaction centres for pyrophosphatase and toxic actions of cardiotoxin II: The status of cardiotoxin II as a metalloprotein

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Cardiotoxin II; pyrophosphatase; magnesium; metalloprotein; reaction centres; cobra

    • Abstract


      Cardiotoxin II of the Indian cobra(Naja naja) contains approximately four Mg2+ per mol. Complete demetallation of the toxin is achieved by three cycles of treatment with ethylenediamine tetraacetate and gel filtration. Reconstitution of toxin by treatment of the apo-protein with Mg2+ restores metal content and inorganic pyrophosphatase activity only to the extent of two atoms/mol and 65%, respectively. Use of Mg (II)-EDTA in the reconstitution experiment yields restoration of half the original enzyme activity. Mg2+ is required for the inorganic pyrophosphatase action of the toxin. A definitive statement on the non-essentiality of Mg2+ for the lethal toxicity of the toxin is not possible at present, although experimental observations indicate that demetallated toxin is as toxic as the native toxin. Based on this and the differing sensitivities of the enzyme and toxic activities of the toxin to heat, it is suggested that the reaction centres in the toxin for the two activities are different and that the pyrophosphatase activity is not causally connected with the lethal toxicity of the toxin

    • Author Affiliations


      K E Achyuthan1 2 L K Ramachandran1

      1. Department of Biochemistry, Osmania University, Hyderabad - 500 007
      2. Department of Medicinal Chemistry, University of Maryland at Baltimore, Baltimore, MD - 21201, USA
    • Dates

  • Journal of Biosciences | News

      Forthcoming Special issue.

    • To trigger further research on plant mitochondria, the Journal of Biosciences is bringing out a special issue titled "Plant Mitochondria: Properties and Interactions with Other Organelles".

      Plant mitochondria are quite distinct and have unique features, such as a cyanide-insensitive alternate pathway. They also interact with chloroplasts to optimize photosynthetic carbon assimilation.

      Submissions are welcome until 30 July 2023. The contributions can be original articles, short communications, reviews, or mini-reviews on any topic related to plant mitochondria.

      Authors can submit their articles online at https://www.editorialmanager.com/jbsc/default2.aspx

      Posted on April 12, 2023
    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.