• Purification and physicochemical properties of α -amylase from irradiated wheat

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/jbsc/003/02/0105-0116

    • Keywords

       

      Wheat; α-amylase; Y-irradiation; purification; physicochemical properties

    • Abstract

       

      α-Amylases from control and gamma-irradiated (at 0.2 and 2.0 kGy dose levels) wheat seedlings were purified to homogeneity and characterized. The molecular weight of the enzyme from a 2 kGy irradiated sample was slightly lower than that of the control; other general and catalytic properties also showed some differences. α-Amylase from the irradiated (2 kGy) sample had a narrow range of pH optimum and was inactivated faster at alkaline pH and by heat treatment than the enzyme from unirradiated wheat. A high apparent Michaelis constant (Km) and a low maximal velocity (Vmax) for the hydrolysis of soluble starch catalyzed by the enzyme from irradiated (2 kGy) wheat, suggested some modifications in the formation of the substrate α-amylase complex. Further, of the total number of amino acid residues lost on irradiation, dicarboxylic amino acids constituted the largest percentage; these structural alterations in the enzyme may be responsible for its partial inactivation. The total sugars liberated upon amylolysis of starch with the 2 kGy irradiated enzyme were lower than control, and there was accumulation of higher maltodextrins in the place of maltose.

    • Author Affiliations

       

      J P Machaiah1 U K Vakil1

      1. Biochemistry and Food Technology Division, Bhabha Atomic Research Centre, Trombay, Bombay - 400 085
    • Dates

       
  • Journal of Biosciences | News

      Forthcoming Special issue.


    • To trigger further research on plant mitochondria, the Journal of Biosciences is bringing out a special issue titled "Plant Mitochondria: Properties and Interactions with Other Organelles".


      Plant mitochondria are quite distinct and have unique features, such as a cyanide-insensitive alternate pathway. They also interact with chloroplasts to optimize photosynthetic carbon assimilation.


      Submissions are welcome until 30 July 2023. The contributions can be original articles, short communications, reviews, or mini-reviews on any topic related to plant mitochondria.


      Authors can submit their articles online at https://www.editorialmanager.com/jbsc/default2.aspx

      Posted on April 12, 2023
      <
    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.