• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Reduced graphene oxide; solution combustion; supercapacitor; electrochemical performance.

    • Abstract


      Reduced graphene oxide (rGO) is synthesized from graphite oxide through urea-assisted solution combustion route. X-ray diffraction analysis reveals a decrease in the interplanar spacing ($d_{002}$) value from 8.14 to 3.44 Aº oncombustion due to reduction. Number of graphitic layers decreases from 58 to 9 on combustion indicating efficient exfoliation. Scanning electron micrographs reveal substantial reduction in the lateral dimension of graphitic planes fromgreater than ${\sim}$1${\mu}$m to less than ${\sim}$380 nm. Raman spectroscopy studies indicate an enhancement of defects in the rGO with an $I_D$/$I_G$ ratio of 1.19. Diminishing intensity of vibrational modes of different oxygen functional groups in the Fourier transform infrared spectrum and higher carbon to oxygen ratio of 12.13 from X-ray photoelectron spectroscopy indicate excellent reduction. N1s X-ray photoelectron spectrum confirms nitrogen doping. Electrical conductivity of rGO is 38 Sm$^{-1}$. The sample as an active material in a three-electrode configuration with 6 M KOH electrolyte exhibits a capacitance of 75.1 F g$^{-1}$ at a current density of 0.1 A g$^{-1}$, and 63% of it is retained even at a current density of 10 A g$^{-1}$. It also exhibits 103% of its initial capacitance after 1000 cycles.

    • Author Affiliations



      1. Department of Physics, University of Kerala, Thiruvananthapuram 695 581, India
      2. Department of Nanoscience and Nanotechnology, University of Kerala, Thiruvananthapuram 695 581, India
    • Dates

    • Supplementary Material

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.