• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Biomolecules; carbon nanoparticle; red fluorescence; bioconjugation; bioimaging.

    • Abstract


      Although wide variety of molecular precursors have been used for carbonization-based synthesis of fluorescent carbon nanoparticle, biomolecule-derived carbon nanoparticle with tunable fluorescence is difficult to synthesize. Here, we report a generalized approach for the preparation of fluorescent carbon nanoparticle from various biomolecules, such as lactose, ascorbic acid, tyrosine and sucrose. The method involves controlled carbonization of molecular precursor in ethylene glycol at 190°C in the presence of Na$_3$PO$_4$. The presented synthetic method can produce 20–30 mg of nanoparticles in one batch with fluorescence quantum yield in the range of 1–10% and nanoparticles can be conjugated with primary amine-terminated chemical/biochemical by simple incubation. These fluorescent carbon nanoparticles can be transformed into different nanobioconjugates for various biomedical applications.

    • Author Affiliations



      1. School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
      2. Department of Physics, CSET, University of South Africa, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Park, Private Bag X6, Johannesburg, South Africa
    • Dates

    • Supplementary Material

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.