• Focus-tunable imaging analyses of the liquid lens based on dielectric elastomer actuator

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Auto-focusing; dielectric elastomer; liquid lens; negative pressure.

    • Abstract


      In order to simulate the auto-focusing function of human eyes, a liquid lens is proposed based on dielectric elastomer actuator (DEA). The lens could realize rapid focusing under voltages. The structure and principle of the lens are described in detail. A novel fabricating method is presented for the lens, which is inspired by the negative pressure technology. A negative pressure region is made in the centre of the dielectric elastomer (DE) membrane, and the liquid is filled. Then the other layer of membrane is covered to seal the liquid. Around the lens is the DEA coupling carbon grease electrodes. The finite element analysis and simulation of the lens deformation are carried out by using the software of Abaqus. The relationship is explored among lens diameter, volume, pretension ratio, actuating voltage and focal length. Itis found that when the liquid volume is fixed in the soft lens, the larger the pre-stretching ratio is, the greater the lens deformation is. At the condition of the same lens diameter, focal-length changes are inversely proportional to the liquid volume. The correctness of built theoretical models is verified by experiments in the end.

    • Author Affiliations



      1. School of Mechanical Engineering, Southeast University, Nanjing, China
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.