Effect of nanoparticles on electrical properties of PVDF-based Mg$^{2+}$ ion conducting polymer electrolytes
NIDHI SANDHYA PATEL RANVEER KUMAR
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/044/0140
Polyvinylidenefluoride (PVDF)-based nanocomposite polymer electrolyte (NCPE) thin films for electrochemical applications have been synthesized by solution cast technique. NCPEs have 70PVDF:30Mg(NO$_3$)$_2$ solid polymer electrolyte (SPE) with conductivity ${\sim}$7.3 9 10$^{–8}$ S cm$^{–1}$ as phase-I and various nanoparticles as phase-II, dispersed in SPE for enhancement in its conductivity. These NCPE films were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and impedance spectroscopic techniques to study the structural and electrical properties. XRD and FTIR studies of film confirms formation of complexes. From composition and temperature dependence of conductivity analysis, we have obtained an optimum conducting composition of NCPE, i.e.,70PVDF:30Mg(NO$_3$)$_2$:3ZnO with conductivity ${\sigma}$ = 3.7 9 10$^{–4}$ S cm$^{–1}$. Ionic transport number (t$_{ion}$ = 0.99) have been calculated from Wagner’s dc polarization technique. Electrochemical cell has been fabricated using cell configuration Mg|NCPE|carbon cell and various cell parameters have been calculated from their discharge characteristics.
NIDHI SANDHYA PATEL1 RANVEER KUMAR
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.