• Enhancement of the up-conversion luminescence performance of Ho$^{3+}$-doped 0.825K$_{0.5}$Na$_{0.5}$NbO$_3$-0.175Sr(Yb$_{0.5}$Nb$_{0.5}$)O$_3$ transparent ceramics by polarization

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/044/0139

    • Keywords

       

      Ho$^{3+}$-doping; up-conversion luminescence; transmittance; ceramics.

    • Abstract

       

      In this study, Ho$^{3+}$ doped 0.825K$_{0.5}$Na$_{0.5}$NbO$_3$-0.175Sr(Yb$_{0.5}$Nb$_{0.5}$)O$_3$ luminescence transparent ceramics were prepared via the traditional solid-state sintering method. The structure and optical properties of the ceramics before and after polarization were studied at 40 kV cm$^{-1}$ for 0.5 h. With the increase of Ho content, the phase structure of the ceramics changed from a pseudo-cubic phase to the tripartite and the orthorhombic phases, and the light transmittance decreased. The ceramics demonstrated an up-conversion luminescence characteristic under the excitation of a 980 nm laser, and the emission wavelengths were 550 and 670 nm. The best up-conversion luminescence performance was obtained when the Ho content was 0.1%. Moreover, the polarization markedly enhanced the luminescence performance of the 0.825K$_{0.5}$Na$_{0.5}$NbO$_3$-0.175Sr(Yb$_{0.5}$Nb$_{0.5}$)O$_3$-0.1%Ho ceramics due to the increased possibility of energy-level radiative transition of rare-earth Ho$^{3+}$ ions and reduction of the $E$$_g$ value of the ceramic.

    • Author Affiliations

       

      YABING SUN1 HUA WANG1 2 CHANGRONG ZHOU1 2 LING YANG1 2 JIWEN XU1 2

      1. School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
      2. Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.