Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/044/0044
This study focuses on the van der Waals (vdW) interactions and oscillatory behaviour of nested spherical fullerenes (carbon onions) in the vicinity of a single-layer graphene (SLG) sheet. The carbon onions are of ${\rm I}_h$ symmetries and the graphene sheet is modelled as a fully constrained flat surface. Employing the continuum approximation along with the 6–12 Lennard-Jones (LJ) potential function, explicit analytical expressions are determined to calculate the vdW potential energy and interaction force. The equation of motion is solved numerically based on the actual force distribution to attain the displacement and velocity of the carbon onion. Using the conservation of mechanical energy principle, asemi-analytical expression is also derived to accurately evaluate the oscillation frequency. Numerical results are presentedto examine the influences of size of carbon onion and initial conditions (initial separation distance and initial velocity) onthe operating frequency of carbon onion–SLG sheet oscillators. It is shown that carbon onion executes oscillatory motionabove the graphene sheet with frequencies in the gigahertz (GHz) range. It is further observed that smaller structures ofcarbon onions produce greater frequencies. We comment that the presented results in this study would contribute to thedevelopment of new generation of nano-oscillators.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.