• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/043/0262

    • Keywords

       

      Hydrogenation; previous light-induced degradation; monocrystalline silicon solar cells; boron-oxygen model.

    • Abstract

       

      Although the monocrystalline silicon (mono-Si)-passivated emitter and rear contact (PERC) solar cells have achieved incredible efficiency, they still can be further improved by hydrogenation. So the hydrogenation was performedto investigate the improvement of large area (>240 cm$^2$) mono-Si PERC solar cells and estimate the significance of previous light-induced degradation (pre-LID) under a high-intensity infrared (HI-IR) LEDs source platform. Then, theresults indicated that the parameters, such as open-circuit voltage ($U_{\rm oc}$) and short-circuit current density ($J_{\rm sc}$) and fill factor (FF), could be better improved after LED hydrogenation with the execution of the pre-LID. The efficiency of mono-Si PERC solar cells with pre-LID increased by $\sim$0.190 $\pm$ 0.005%$_{\rm abs.}$ for 2 min, which was higher than that without pre-LID (0.115 $±$ 0.005%$_{\rm abs.}$). Moreover, the results showed that the efficiency of large area mono-Si PERC solar cells with light-induceddegradation (LID) treatment after LED hydrogenation only existed a slight degradation of about $-$0.253 $\pm$ 0.005%$_{\rm rel.}$. Compared with mono-Si PERC solar cells without pre-LID, the efficiency improvement and LIDmitigation of mono-Si solar cells with pre-LID was faster and more significant by LED hydrogenation, so that the LED hydrogenation time significantly can shorten from 6 to 2 min. Additionally, the possible presence of a boron-oxygen (BO) model was estimated, and this BO model is susceptible to be activated by the injection of external energy, resulting in more BO defects in the process of pre-LID, so that subsequent hydrogenation rate becomes faster.

    • Author Affiliations

       

      JIANBO SHAO1 2 XI XI2 3 GUILIN LIU2 3 SHAOMIN LI1 2 RUOYING PENG2 3 GUOQING CHEN2 3 YONGFEI JIANG4

      1. School of Internet of Things, Jiangnan University, Wuxi 214122, China
      2. Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
      3. School of Science, Jiangnan University, Wuxi 214122, China
      4. Wuxi Suntech Power Co., Ltd., Wuxi 214208, China
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.