Gold-nanoparticle- and nanostar-loaded paper-based SERS substrates for sensing nanogram-level Picric acid with a portable Raman spectrometer
SREE SATYA BHARATI MORAM CHANDU BYRAM VENUGOPAL RAO SOMA
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/043/0053
Nanoparticle (NP)-loaded filter paper (FP)-based surface-enhanced Raman scattering (SERS) substrates have been prepared using differently shaped gold (Au) NPs. The shape of Au NPs plays a significant role in the amplification ofSERS signal. Here, two differently shaped Au NPs were synthesized using two different techniques: (a) femtosecond (fs) laser ablation in liquid and (b) chemical method. Spherical shaped Au NPs were obtained using fs ablation of a bulk Autarget in distilled water and Au nanostars (NSs) were achieved through chemical process utilizing N-vinyl-2-pyrrolidone as a reducing/capping agent. The size and shapes of these synthesized NPs and NSs were investigated meticulously usingdifferent characterization techniques such as transmission electron microscopy, field emission scanning electron microscopy and X-ray diffraction. Both the NPs and NSs were subsequently loaded onto commercially available FP by simple drop casting method. To achieve higher number of hot spots, the aggregated spherical NPs were obtained by addition of NaCl. The non-aggregated spherical, aggregated spherical, and star Au NPs loaded on FP were used for the detection of a dye (Nile blue) and an explosive molecule (Picric acid).
SREE SATYA BHARATI MORAM1 CHANDU BYRAM1 VENUGOPAL RAO SOMA1
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.