• Characterization of organic light-emitting diode using a rubrene interlayer between electrode and hole transport layer

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/043/0035

    • Keywords

       

      Rubrene; hole injection; quantum tunnelling; thickness variation; stability.

    • Abstract

       

      In this paper, we report the characteristic properties of an organic light-emitting diode (OLED) using a rubrene buffer layer over the fluorine-doped tin oxide (FTO) surface. Our study includes both electrical and optical properties of the device. Here, we study the OLED devices at different thicknesses of the buffer layer, which varies from 3 to 11 nm. For device fabrication, we use a thermal evaporation unit. Finally, we report that device performance in a bilayer anode form is always higher than that of a single-FTO-based device. Maximum device efficiency is found to be 6.31 cd A$^{−1}$ around 8-nm thickness of rubrene layer over the FTO surface.We also study the stability of both the single-layer and double-layer anode OLED devices. Through this study, we found that both device efficiency and luminance intensity of the bilayer anode OLED remain more stable for more number of days compared with the single-FTO OLED device.

    • Author Affiliations

       

      DHRUBAJYOTI SAIKIA1 RANJIT SARMA1

      1. Thin Film Laboratory, Department of Physics, J B College, Jorhat 785001, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.