Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles
JOYSHREE MAJI SANJEEV PANDEY SOUMEN BASU
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/043/0025
In this paper we studied the efficiency of magnesium oxide (MgO) nanoparticles with an average size of 27 nm synthesized by a simple soft chemical method, in killing both Gram negative and Gram positive pathogenic bacteria. The antibacterial activity was determined by a minimum inhibitory concentration technique, agar cup method and live count technique. These nanoparticles show the maximum antibacterial activity towards Bacillus sp. in comparison with Escherichia coli. Transmission electron microscopy analyses of the treated-bacterial strains showed a morphological deformation with increased cell wall disruption. From the analysis of the antibacterial activity of MgO nanoparticles it is revealed that6 $\mu$g ml$^{−1}$ of dose is sufficient for killing Bacillus sp. whereas it is 7.5 $\mu$g ml$^{−1}$ for E. coli. These doses may be used in medical application. MgO nanoparticles could be used as antibacterial agents after completion of successful in vivo trials.
JOYSHREE MAJI1 SANJEEV PANDEY2 SOUMEN BASU1
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.