• A remarkable enhancement between optical transparency and SHG efficiency on doped-KHP single crystals

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      KHP; organic dopant; FTIR; fluorescence.

    • Abstract


      Potassium hydrogen phthalate (KHP) single crystals are non-linear optical materials and their transmittance window are remarkably enhanced by an organic dopant such as resorcinol. The present study was mainly focused on the growth and characterization of the single-crystal KHP doped with resorcinol which was synthesized by a slow evaporation solution technique and its dimension was found to be $8 \times 7 \times 2.75$ mm$^3$ at ambient temperature. Vibrationalassignments of the functional groups confirmed the presence of dopants. The optical behaviour of the grown crystal was explored by ultraviolet–visible–near-infrared studies which result in 99% of the transmittance with the cut-off wavelength of 250 nm. The mechanical property was analysed by the Vickers microhardness test. The apparent microhardness increases with increasing applied indentation load revealing the reverse indentation size effect behaviour. Organic impurity increases the second harmonic generation efficiency of KHP, suggesting that the molecular alignment in the presence of resorcinolresults in enhanced non-linearity.

    • Author Affiliations



      1. Department of Physics, Cauvery College for Women, Trichy 600 018, India
      2. Department of Physics, Arignar Anna Government Arts College, Musiri 600 005, India
      3. Department of Chemistry, Srimad Andavan Arts and Science College, Trichy 621 121, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.