• Some aspects of new Cu(NbC) films

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Cu(NbC) alloy; films; co-sputtering; anti-oxidation; adhesive strength; bacteria killing and prevention.

    • Abstract


      In this study, new barrier-free Cu(NbC) alloy films with two different thicknesses, i.e., 8 and 300 nm, containing 0.3 at% C and 0.5 at% Nb, which are deposited via co-sputtering on three types of substrates, viz., Si, stainless steel and polyimide (PI), have been developed, annealed, measured and analysed. The resistivity value of the new 300-nm-thick films atop Si substrates is 3.07 $\mu\Omega$ cm after annealing at 450$^{\circ}$C for 200 h. The low resistivity and diffusion depth of the new films exhibit their good quality in anti-oxidation stability in a high-temperature environment. The films also display high-adhesive strength atop either stainless-steel or PI substrates, $\sim$7–8 times greater than that of their pure-Cu counterparts. In sharp contrast, the antibacterial ratio of the new films is $\sim$96% while that of their pure-Cu counterparts is 0%. In addition, the contact angles of Cu(NbC) films are greater than those of their pure-Cu counterparts, resulting in a far superior antibacterialefficacy for the new films to pure-Cu films against, for example, Staphylococcus aureus BCRC 10451.With these desirable merits, the new films seem to be a good candidate material for bacteria killing and prevention, reduction of legionella spread inside hospitals and/or large buildings, biological medical care systems and advanced surgical tools. The new films deposited on PI substrates also seem to be suitable for making supple electrically conductive parts or devices, such as flexible panels, keyboards, screens, smartphones embedded in smart textiles and so forth.

    • Author Affiliations

    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.