• Silica- and diatomite-modified fluorine rubber nanocomposites

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Fluorine rubber; coupling agents; mechanical properties; thermal properties.

    • Abstract


      To find the most suitable filler system for fluorine rubber, a simple and green method to introduce a limited content of silanol groups on the surfaces of silica and fluorine rubber was studied. Fluorine rubber nano-composites wereprepared by using nano-silica, diatomite and carbon black as the reinforcement and filler and the coupling agents KH550, KH590 or Si69 as the compatibilizer between the filler and fluorine rubber. The structure and morphology of the composites were investigated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The results showed that the most suitable filler system for fluorine rubber was the diatomite and silica compound (8:12 mass ratio), the best coupling agent was KH550 at 2 parts per hundred rubber (phr). The modified compound filler was silanized with the coupling agent KH550 for fluorine rubber by FTIR analysis, the compatibility between the filler and fluorine rubber was improved by SEM analysis and further confirmed by thermogravimetric analysis to improve the thermal properties of fluorine rubber with the filler compound system.

    • Author Affiliations



      1. College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, People’s Republic of China
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.