• Fabrication and characterization of transparent nanocrystalline ZnO thin film transistors by a sol–gel technique

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/042/04/0167

    • Keywords

       

      Zinc oxide; sol–gel; thin film transistor; optical; electrical.

    • Abstract

       

      A nanocrystalline zinc oxide (ZnO) thin film-based metal–insulator–semiconductor thin film transistor (MISTFT) was fabricated by a facile sol–gel technique onto silicon di-oxide/indium tin oxide-coated glass substrates. Themicrostructural study of the ZnO thin films indicated uniform crystalline growth with typical (002) X-ray diffraction peaks for h-ZnO with a wurtzite structure. The optical transmittance of the ZnO thin films was >80% in the visible region of theelectromagnetic spectrum. The field effect transistor (FET) aluminium top contacts were fabricated using suitable shadow masking. The transfer characteristics of a typical ZnO MIS FET revealed nonlinearity in a linear plot. From the slope and crossover, we obtained a first estimate of field effect mobility ($\mu$) and threshold voltage ($V_T$) of 0.13 cm$^2$ V$^{−1}$ s$^{−1}$ and1.03 eV, respectively. The ZnO TFT operated in enhanced mode with n-channel characteristics and the drain current on–off ratio was 105. The deposition parameter needs to be optimized to obtain TFTs with a higher modulation ratio and larger field-effect mobility.

    • Author Affiliations

       

      S R BHATTACHARYYA1 R N GAYEN2

      1. Department of Physics, Suri Vidyasagar College, Suri, Birbhum 731101, India
      2. Department of Physics, Presidency University, Kolkata 700073, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.