• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      BCZT ceramics; calcination temperatures; sol–gel method; dielectric properties.

    • Abstract


      (Ba$_{0.85}$Ca$_{0.15}$)(Zr$_{0.1}$Ti$_{0.9}$)O$_3$ (BCZT) ceramics were prepared by a simple sol–gel method. The effects of calcining temperature on the formation of BCZT ceramics were investigated in detail. The morphological changes and phase transformation of BCZT ceramics were analysed by X-ray diffraction and scanning electron microscopy. It is found that the calcined temperature determines the formation of a crystal phase, crystallinity and grain size. For dielectric properties, dielectric constant was increased first, and then decreased with increasing calcination temperature, in which the maximumdielectric constant of 2732 was achieved at 650$^{\circ}$C under a low-frequency alternating electric field. This may be attributed to the high crystallinity, density and fewer surface defects of BCZT ceramics. The optimum calcination temperature helps to understand the dielectric properties, which indicates that BCZT ceramics are promising lead-free candidates for widely used lead-based piezoelectric materials.

    • Author Affiliations



      1. China School of Science, Harbin University of Commerce, Harbin 150076, People’s Republic of China
      2. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People’s Republic of China
    • Dates

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.