• Effect of electrolytes on photoelectrochemical performance of a CuS–CdS heterojunction

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/042/03/0125

    • Keywords

       

      Solar cell; chemical bath deposition method; heterojunction; conversion efficiency.

    • Abstract

       

      CdS–CuS heterojunction films have been grown successfully on a copper substrate using a chemical bath deposition (CBD) method. The obtained films are characterized usingX-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical absorption, Raman spectroscopy and photoluminescence (PL) analysis and the photo-electrochemical (PEC) properties of the CdS–CuS heterojunction have been studied using different electrolytes. The XRD pattern of CuS–CdS shows peaks corresponding to CuS (hexagonal) and CdS (cubic) structures, while the optical absorption studies revealed the presence of an absorption edge corresponding to CuS–CdS (band gap of 1.85 eV). The Raman spectra of the CuS, CdS and CuS–CdS heterojunctions were recorded and are in good agreement with the results reported in the literature. TEM and cross-sectional SEM images show an overlap between CuS rods and CdS flasks. The charge transfer across the layers was studied by using PL spectra. The measurement of the photo-electrochemical properties using a conventional two electrode system for an iodine electrolyte showed the highest conversion efficiency of 1.40% as against for potassium ferro–ferricyanide (0.38%) and polysulphide electrolytes (0.02%).

    • Author Affiliations

       

      A S JADHAV1 V M BHUSE1

      1. Thin Film Research Laboratory, Department of Chemistry, Government Rajaram College, Kolhapur 416004, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.