• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Nanocomposite; filler; PVA.

    • Abstract


      Polyvinyl alcohol (PVA) hybrid nanocomposites are prepared via an ex situ approach with ZnO and MWCNT nanoparticle fillers and their conductive mechanisms have been investigated. The tailored hybrid nanocomposite conformation and their microstructural disparities for different filler concentrations were studied using an X-ray diffractometer. The direct current (DC) conductivity studies show an increase in the conductivity from $1.0528\times 10^{−11}$ to $2.1514\times 10^{−8}$ S cm$^{−1}$ up to a percolation threshold filler concentration of $x = 7.5$ wt%. The dielectric constant substantially indicates a decreasingtrend with increasing frequency. The exaggerated dielectric constant values of 11.8 at 5 kHz, 6.3 at 100 kHz, 5.86 at500 kHz and 2 at 1 MHz are observed for 7.5 wt% filler hybrid nanocomposites, which indicates their potential applicationas a gate material in metal-oxide-semiconductor field-effect transistors (MOSFETs). The alternating current (AC) electricalconductivity demonstrates an increasing behaviour up to $x = 7.5$ wt% filler concentration. The smaller values observedin the real part of the electric modulus ($M^{\prime}) indicates a riddance in electrode polarization. The observed higher frequencyshift in the imaginary part of the electric modulus for increasing the filler concentration up to $x = 7.5$ wt%, decreases therelaxation time of the dipole orientation thereby increasing the conductivity mechanism of the hybrid nanocomposites. Apartfrom these, its small relaxation time with high electrical conductivity favours this material PVA/($x$)MWCNT($15 − x$)ZnO to have prospective application in microwave absorption appliances. The increase in the surface roughness of the film seenfrom the AFM images up to $x = 7.5$ wt% concentration supports an enhancement in the crystalline nature of the filler. Differentialscanning calorimeter studies show an enhancement in glass transition temperature ($T_g$), melting temperature ($T_m$)and decomposition temperature ($T_d$) for PVA filled with MWCNTs and ZnO composites for optimum filler concentration$x = 7.5$ wt%.

    • Author Affiliations



      1. Department of Physics, A J Institute of Engineering and Technology, Mangalore 575006, India
      2. Department of Physics, St Joseph Engineering College, Vamanjoor, Mangalore 575028, India
      3. Department of Chemistry, Srinivas School of Engineering, Mukka, Mangalore 574146, India
      4. Department of Physics, Alva’s College, Moodbidri 574227, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.