• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/042/03/0117

    • Keywords

       

      Nanocomposite; carbon nanotube; mechanical properties; Halpin–Tsai model; agglomeration.

    • Abstract

       

      In the present work, a new form of a Halpin–Tsai (H–T) micromechanical model is proposed to characterize the elastic modulus and tensile strength of carbon nanotube (CNT)-reinforced polymer nanocomposites. To this end, three critical factors, including random dispersion, non-straight shape and agglomerated state of the CNTs are appropriately incorporated into the H–T model. A comparison of the model predictions with some experiments on the CNT/polymer nanocomposites serves to verify the applicability of the proposed approach. It is found that the present predictions are in good agreement withthe available experimental data. The results clearly reveal that for a more accurate prediction of the mechanical properties of the CNT/polymer nanocomposites, considering the random orientation, waviness and agglomeration of CNTs into the polymer matrix is critically essential. Also, some parametric studies are carried out to show the effects of volume fraction,non-straight shape, aspect ratio, mechanical characteristics and non-uniform dispersion of CNTs as well as matrix properties on the elastic modulus and tensile strength of CNT/polymer nanocomposites. The results reveal that it is necessary to eliminate the agglomeration and use the straight CNTs if the full potential of CNT reinforcement is to be realized.

    • Author Affiliations

       

      MOHAMMAD KAZEM HASSANZADEH-AGHDAM1 JAMALODDIN JAMALI2

      1. Department of Mechanical Engineering, Ayandegan Institute of Higher Education, P.O. Box 76963, Tonekabon, Iran
      2. College of Engineering and Technology, American University of the Middle East, P.O. Box 15453, Eqaila, Kuwait
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.