• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Hollow Fe$_3$O$_4$; MnO$_2$; core–shell; hybrid electrode; lithium-ion battery.

    • Abstract


      The fabrication of hybrid electrodes with conversion-type electrode materials has drawn growing interest in improving the capacity performance of lithium-ion batteries (LIBs) for many high-energy applications. However, as a typical conversion-type electrode material, Fe$_3$O$_4$ is usually restricted by large amount of volume change during repeated lithiation/delithiation course, which dramatically hinders the cycling stability of the constructed LIBs. We design a hybrid electrode of Fe$_3$O$_4$ nanospheres with a hollow structure wrapped by MnO$_2$ nanosheets (H-Fe$_3$O$_4$/MnO$_2$ NSs nanospheres).As a result of the synergetic effect of a high-capacity material coating and a robust hollow core, the H-Fe$_3$O$_4$/MnO$_2$ NS hybrid electrode delivers reversible capacity as high as 590 mAh g$^{−1}$ at a current rate of 0.1C and maintains 92% of the initial reversible capacity after 1000 cycles at 1C.

    • Author Affiliations



      1. Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, People’s Republic of China
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.