• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Chemical co-precipitation; Zn$_{1−x}$Mn$_x$S nanoparticles; photo-catalytic activity.

    • Abstract


      Chemical co-precipitation route was successfully employed to synthesize polyethylene glycol-coated pure and doped Zn$_{1−x}$Mn$_x$S (0 ≤ x ≤ 0.1) nanoparticles. The crystallographic and morphological analyses have been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formation of cubic crystal structure and quasi-spherical morphology has been revealed by XRD and TEM, respectively. The optical analyses have been done by UV–Vis absorption spectroscopy and energy resolved photoluminescence spectroscopy. Energy dispersive X-ray spectroscopy study has been carried to analyse the elemental composition. The doping concentration dependent photo-catalytic activity was checked to analyse the photo-catalytic potential of Zn$_{1−x}$Mn$_x$S nanoparticles under UV irradiation.

    • Author Affiliations



      1. Department of Chemistry, Punjabi University, Patiala, Punjab 147 002, India
      2. Department of Physics, Punjabi University, Patiala, Punjab 147 002, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.