• Influence of the electrochemical properties of vanadium oxides on specific capacitance by molybdenum doping

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/042/01/0037

    • Keywords

       

      Mo-doped VO$_2$(B) nanobelts; Mo-doped V$_2$O$_5$ nanobelts; chemical synthesis; electrochemical properties; specific capacitance.

    • Abstract

       

      Molybdenum (Mo)-doped vanadium dioxide (VO$_2$(B)) nanobelts were successfully synthesized using commercial vanadium pentoxide (V$_2$O$_5$) as the starting material and ammonium molybdate as the dopant by a simple hydrothermal route. Then, Mo-doped VO2(B) nanobelts were transformed to Mo-doped V$_2$O$_5$ nanobelts by calcination at 400$^{\circ}$C under an air atmosphere. The samples were characterized by X-ray powder diffraction,energy-dispersive X-ray spectrometer, elemental mapping, X-ray photoelectron spectroscopy, X-ray fluorescence and transmission electron microscopy techniques. The results showed that Mo-doped VO$_2$(B) and V$_2$O$_5$ solid solution with high purity were obtained. The electrochemical properties of Mo-doped VO$_2$(B) and V$_2$O$_5$ nanobelts as supercapacitor electrodes were measured using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD). The specific capacitance of VO$_2$(B) nanobelts slightly declines with Mo doping, however, the specific capacitance of V$_2$O$_5$ nanobelts greatly improves with Mo doping. Mo-doped V$_2$O$_5$ nanobelts exhibit the specific capacitance as high as 526 F g$^{−1}$ at the current density of 1 A g$^{−1}$. Both CV and GCD curves show that they have good rate capability and retain 464, 380, 324 and 273 F g$^{−1}$ even at a high-current density of 2, 5, 10 and 20 A g$^{−1}$, respectively. It turns out that Mo-dopedV$_2$O$_5$ nanobelts are ideal materials for supercapacitor electrodes in the present work.

    • Author Affiliations

       

      YUTING HUANG1 2 YIFU ZHANG1

      1. School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
      2. Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.