Influence of zinc oxide nanorods on an orientationally ordered fluid comprising soft-bent dimers
PRAGNYA SATAPATHY SRIVIDHYA PARTHASARATHI D S SHANKAR RAO MADHUBABU KANAKALA C V YELAMAGGAD S KRISHNA PRASAD
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/041/05/0116
Bent-core liquid crystals (LCs) introduced a whole new dimension to the science of LCs. Besides re-emphasizing the importance of the shape of the molecule, they brought in phases with symmetry, not known earlier.Another sub-class of systems that is emerging is that of soft-bent molecules. In contrast with the bent-core molecules, here the bend is achieved through the parity of the aliphatic linker that connects two monomers. They hold the unique advantage that a simple variation of temperature can favour different conformer states and thus govern the self-assembled structure. A highlight of the power of this route is seen in terms of the discovery of a new type of nematic, viz., twist–bend nematic. Investigations on not only this phase but also the regular nematic that often precedes it have received significant attention in the last few years. Here we present results on the regular nematic phase of a binary mixture comprising such a soft-ben dimer, known in the literature as CB7CB, by incorporating zinc oxide nanorods (NRs) into the system. The NRs with anaspect ratio of $\sim$7.2, not very different from that of LCs, further accentuate the importance of shape and shape anisotropy of the entities. Specifically, we observe that the nematic–isotropic transition temperature increases by $\sim$1.9K even for a low concentration of 4% NRs.While the dielectric anisotropy decreases, birefringence shows a substantial increase, adding to thecomplexity of the influence. Upon addition of minute amount of NRs (1%), while the splay elastic constant gets enhanced, its bend counterpart not only gets reduced but retains the convex-shaped thermal profile seen for the parent mixture.
PRAGNYA SATAPATHY1 SRIVIDHYA PARTHASARATHI1 D S SHANKAR RAO1 MADHUBABU KANAKALA1 C V YELAMAGGAD1 S KRISHNA PRASAD1
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.