• Influence of TiO$_2$ particle size and conductivity of the CuCrO$_2$ nanoparticles on the performance of solid-state dye-sensitized solar cells

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/040/07/1379-1388

    • Keywords

       

      Solid-state dye-sensitized solar cells; sol–gel method; TiO$_2$ nanoparticle; CuCrO$_2$ nanoparticles; electrical transport.

    • Abstract

       

      Solid-state dye-sensitized solar cells have been fabricated with mesoporous TiO$_2$ photoanode and N719 dye as photosensitizer. First, TiO$_2$ and non-doped, Zn- and Mg-doped CuCrO$_2$ nanoparticles have been synthesized by sol–gelmethod. In addition, the TiO$_2$ pastes have been prepared through Pechini-type sol–gel method. The effect of TiO$_2$ particle size, mesoporous TiO$_2$ photoanode thickness and solid-state electrolyte thickness on the efficiency of the fabricated devices has been investigated. Our results show that in spite of the low amount of dye loading for photoanode with large TiO$_2$nanoparticles (80–180 nm), the dye-sensitized solar cell made from it has higher efficiency than that constructed from thephotoanode comprising of small particles about 10–15 nm in size. The higher efficiency is attributed to the longer diffusionlength of electrons because of a better electron transport and penetration of a large amount of CuCrO$_2$ nanoparticles inthe porous structure of TiO$_2$ photoanode. By using the doped CuCrO$_2$ nanoparticles, the efficiency has been increasedfrom 0.027% for TiO$_2$/N719 dye/CuCrO$_2$ to 0.033% for TiO$_2$/N719 dye/CuCrO$_2$:Zn and further increased to 0.042% for TiO$_2$/N719 dye/CuCrO$_2$:Mg. The efficiency enhancement by doping is ascribed to the conductivity improvement due to the presence of impurity atoms.

    • Author Affiliations

       

      M ASEMI1 2 M GHANAATSHOAR1 2

      1. Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, 1983969411 Tehran, Iran
      2. Solar Cells Research Group, Shahid Beheshti University, G.C., Evin, Tehran 1983969411, Iran
    • Dates

       
  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.