• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Mn$_{0.03}$Zn$_{0.97}$O; amorphous La$_{0.7}$Zn$_{0.3}$MnO$_3$; heterostructures; resistive switching; sol–gel.

    • Abstract


      Mn$_{0.03}$Zn$_{0.97}$O (MZO)/amorphous La$_{0.7}Zn$_{0.3}$MnO$_3$ (LZMO) heterostructures were deposited on p$^+$-Si substratesthrough sol–gel spin coating. Ag/MZO/LZMO/p$^+$-Si and Ag/LZMO/MZO/p$^+$-Si devices exhibit a bipolar, reversibleand remarkable resistive switching behaviour at room temperature. The ratio of the resistance at high-resistance state (HRS)to that at low-resistance state (LRS) ($R_{\rm HRS}/R_{\rm LRS}$) in the Ag/LZMO/MZO/p$^+$-Si device is approximately five orders of magnitude, and is maintained after over 10$^3$ successive switching cycles or over a period of $2\times 10^6$ s, indicating good endurance property and retention characteristics. Conversely, the ratio in the Ag/MZO/LZMO/p$^+$-Si device began to decrease after 100 successive switching cycles. The LZMO/MZO interface could play an important role in the resistive switching behaviour of the devices. The dominant conduction mechanism of the two devices is charge-trap emission.

    • Author Affiliations



      1. School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, China
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.