• A novel microbond bundle pullout technique to evaluate the interfacial properties of fibre-reinforced plastic composites

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/040/04/0737-0744

    • Keywords

       

      Microbond bundle pullout test; carbon/epoxy; fibre-reinforced composites; mesomechanics; interfacial properties.

    • Abstract

       

      The interfacial properties of the fibre composite systems decide the overall usability of a composite in simpleand complex shapes, as they are the deciding factors in determination of the mechanical properties, structural propertiesand above all a complete understanding of the reliability of composite systems. In the present investigation, the interfacialproperties of carbon fibre/epoxy composites viz., matrix shrinkage pressure, interfacial frictional stress, interfacial shear stress and coefficient of friction were evaluated through a novel microbond bundle pullout test. This test is different from the single fibre pull out, fibre fragmentation or the fibre push in test. Based on some of the physical principles involving the single fibre microbond pullout test, like the contact angle of the microbond matrix drop with the fibre surface, the surface tension/energy of the two surfaces before and after adhesion and the interfacial fibre/matrix chemistry, this is simple to perform and statistically averaged mesomechanical test is also easy to evaluate and is shown to be a test method thatenables a conservative prediction of the laminate level or macromechanical shear properties of fibre composite systems.This test demonstrates the validity of the mesomechanical tests that are more relevant to the macromechanical tests thanthe micromechanical tests. Fractography carried out to corroborate the observed mechanical properties with the fracturefeatures is also reported. The general advantages of the mesomechanical interfacial tests over those based on micromechanical assumptions is also discussed along with some common limitations.

    • Author Affiliations

       

      PADMANABHAN KRISHNAN1

      1. Department of Manufacturing, School of Mechanical Engineering, VIT-University, Vellore 632014, India
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.