• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Co$_9$S$_8$ nanotubes; solvothermal; catalytic reduction; 4-nitrophenol.

    • Abstract


      Co$_9$S$_8$ nanotubes have been successfully synthesized via a facile two-step solvothermal method without the assistance of any template or surfactant, using cobalt sulphate (CoSO$_4$·7H$_2$O), urea and sodium sulphide (Na$_2$S·9H$_2$O) as starting reactants, and deionized water and glycol as the reactive medium. The phase and the morphologyof the as-obtained product were characterized by means of powder X-ray diffraction, energy dispersive spectrometry and scanning electron microscopy. The result displays that the Co9S8 nanotubes have hexagonal crosssections,the diameter of the nanotubes is about 200 nm and the wall thickness is of 50 nm. The experiments showed that the Co$_9$S$_8$ nanotubes could be used as new-type catalysts for the reduction of 4-nitrophenol. It was found thatthe as-obtained Co$_9$S$_8$ nanotubes contributed to the best catalytic activity.

    • Author Affiliations



      1. School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, PR China
      2. College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids of Education Ministry, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Annuli Normal University, Wuhu 241000, PR China
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.