• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Dye-sensitized solar cells; hydrothermal method; TiO$_2$ nanocrystals; multilayer photoanodes; energy conversion efficiency.

    • Abstract


      TiO$_2$ nanocrystals (NCs) with sizes around 20 nm were synthesized by hydrothermal method in acidic autoclaving pH. The hydrothermally grown TiO$_2$ NCs and P25 TiO$_2$ nanoparticles (NPs) were used in the preparationof two different pastes using different procedures. These pastes with different characteristics were separately deposited on FTO glass plates to form multilayer photoanodes of the dye-sensitized solar cells. The aim of this study was to search how a thin sub-layer of the hydrothermally grown TiO2 NCs in the photoanodes could improve the efficiency of TiO$_2$ P25-based solar cells. The highest efficiency of 6.5% was achieved for a cell with a photoanodecomposed of one transparent sub-layer of hydrothermally grown TiO$_2$ NCs and two over-layers of P25 NPs. Higher energy conversion efficiencies were also attainable using two transparent sub-layers of hydrothermally grown TiO$_2$ NCs. In this case, an efficiency of 7.2% was achieved for a cell with a photoelectrode made of one over-layer of P25 TiO$_2$ NPs. This could show an increase of about 30% in the efficiency compared to the similar cell with a photoanode made of two layers of hydrothermally grown TiO2 NCs.

    • Author Affiliations



      1. Physics Department, Faculty of Science, Arak University, Arak 38156, Iran
      2. Chemical Engineering Department, Faculty of Engineering, Arak University, Arak 38156, Iran
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.