Investigation of TaC–TaB2 ceramic composites
Behzad Mehdikhani Gholam Hossein Borhani Saeed Reza Bakhshi Hamid Reza Baharvandi
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/039/01/0079-0084
The TaC–TaB2 composition was sintered by spark plasma (SPS) at 1900–2100°C and applied pressure of 30 MPa. TaC and 2–3 wt% B4C were used as starting powders. Densification process, phase evolution, microstructure and the mechanical properties of the composites were investigated. The results indicated that the TaC–TaB2 composition could be SPS to 97% of theoretical density in 10 min at 2100°C. Addition of B4C leads to an increase in the density sample from 76 to 97%. B4C nano-powder resists grain growth even at high temperature 2100°C. The formation of TaB2/carbon at TaC grain boundaries helps in pinning the grain boundary and inhibiting grain growth. The phase formation was associated with carbon and boron diffusion from the starting particles B4C to form TaB2 phases. TaC grain sizes decreased with increase in B4C concentration. Samples with 2.0 wt% B4C composition had highest flexure strength up to 520 MPa. The effect of B4C addition on hardness measured by microhardness has been studied. Hardness of samples containing 3.0 wt% B4C was 16.99 GPa.
Behzad Mehdikhani1 Gholam Hossein Borhani1 Saeed Reza Bakhshi1 Hamid Reza Baharvandi2
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.