• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/038/07/1851-1858

    • Keywords

       

      Nanopowder; chemical synthesis; photoluminescence; Raman spectroscopy; semiconductor.

    • Abstract

       

      UV emitting ZnO nanopowder was chemically synthesized and subsequently subjected to heat treatment in oxygen atmosphere for potential optoelectronic properties. Characterization including Raman spectroscopy, photoluminescence, SEM, FT-IR and XRD were performed to see the effect of high temperature heat treatment and subsequently oxygen defects on the physical properties of ZnO powder. Chemically prepared product was highly pure polycrystalline w-ZnO with random crystallites orientation. Study showed a magnificent absorption of oxygen by the product as manifested by the decreased intensity of deep-level green emission and E1 (LO) phonon mode. The phonon modes appeared at 276 and 970 cm−1 and which have been assigned to ZnO by the previous researchers under relaxed Raman selection rule were no longer found with heat treatment. UV emission was enhanced and the ratio of UV to green emission (𝐼UV/𝐼 green) was correlated with the crystal structure and oxygen vacancies before and after heat treatment. FT-IR study established strong Zn-O bending and stretching bands at 356 and 498 cm−1. SEM analysis demonstrated fine crystallites distribution in ZnO nanopowder with almost spherical morphologies. Reasonably, a more spherical and ordered morphologies with large grains were found with heat treatment. The investigated findings manifested improved structural and optical properties for various optoelectronic and biomedical applications of technological importance.

    • Author Affiliations

       

      Taj Muhammad Khan1 2 Tayyaba Bibi3 Babar Hussain1 4

      1. National Institute of Lasers and Optronics (NILOP), Photonics Division, P.O. Nilore 45650, Islamabad, Pakistan
      2. Trinity College Dublin (TCD), School of Physics, Dublin, Ireland
      3. Department of Chemistry, University of Peshawar, Peshawar 45000, Pakistan
      4. Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
    • Dates

       
  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.