• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Polymers; chemical synthesis; infrared spectroscopy; dielectric properties.

    • Abstract


      Gum arabic (GA)-mediated chemical synthesis was carried out for obtaining ZnO nanoparticles (ZnO-NPs) (particle size of ZnO ≈ 40 nm) which, in turn, was used for preparing ZnO–biopolymer nanocomposites. The dielectric study of this synthesized products is reported in this paper. The synthesized products were characterized by X-ray diffraction, Fourier transform infrared, and transmission electron microscopy for their structure and morphology study. The frequency dependence of dielectric constant and dielectric loss of these GA–ZnO nanocomposites were analysed in the frequency range of 100 Hz–5 kHz. In addition, the dielectric property of these nanocomposites (0–15 wt% filler concentration) was analysed with respect to frequency in the temperature range 30–80°C. A high dielectric constant of 275 is achieved for the sample with 10 wt% of ZnO filler. The dielectric property of GA–ZnO nanocomposites is attributed to the interfacial and orientation polarization.

    • Author Affiliations


      Puspendu Barik1 2 Ashis Bhattacharjee1 Madhusudan Roy3

      1. Department of Physics, Visva-Bharati University, Santiniketan 735223, India
      2. Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
      3. Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata 700084, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.