Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite
Li Fu Yuhong Zheng Zhuxian Fu Aiwu Wang Wen Cai
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/boms/038/03/0611-0616
This paper proposed a simple, efficient and sensitive electrochemical sensor for dissolved oxygen (DO) detection based on a galvanic displacement synthesized reduced graphene oxide–silver nanoparticles (RGO/Ag) composite modified grassy carbon electrode (GCE). The synthesized RGO/Ag nanocomposite was characterized by UV–vis spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicate the graphene oxide (GO) has been successfully reduced during the galvanic displacement process and the average size of Ag nanoparticle is 52 nm. The RGO/Ag nanocomposite-modified GCE showed a significant enhancement of DO detection compared with bare and RGO-modified GCEs. Moreover, the proposed DO sensor also exhibited an excellent repeatability, reproducibility and anti-interference ability
Li Fu1 2 Yuhong Zheng1 Zhuxian Fu2 Aiwu Wang3 Wen Cai3
Volume 44, 2021
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.