• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      MnZnO3; resistive switching; annealing temperature; sol–gel.

    • Abstract


      Single-phase MnZnO3 films were prepared on glass substrates coated with the use of indium tin oxide (ITO) as transparent bottom electrode via the sol–gel method. The effects of annealing temperature on structure, resistance switching behaviour and endurance characteristics of the ZnMnO3 films were investigated. The stable resistive switching behaviour with high resistance ratio in Ag/ZnMnO3/ITO unsymmetrical structure was observed. No second phase is detected, and the crystallinity of the MnZnO3 films is improved with the increase in annealing temperature from 350 to 400°C. The MnZnO3 films annealed at 350–450°C with an Ag/MnZnO3/ITO structure exhibit bipolar resistive switching behaviour. Ohmic and space-charge-limited conductions are the dominant mechanisms at low and high resistance states, respectively. $V{}_{\text{ON}},\ \text{V_{OFF}}$ and $R_{\text{HRS}}/R_{\text{LRS}}$ of theMnZnO3 films increase with the increase in annealing temperature. Improved endurance characteristics are observed in the samples annealed at 350 and 400°C. The endurance of the MnZnO3 films degrades when annealed at >450°C.

    • Author Affiliations


      Hua Wang1 2 Shu-Ming Gao1 Ji-Wen Xu1 2 Chang-Lai Yuan1 2 Xiao-Wen Zhang1 2

      1. School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
      2. Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.