• Promising in vitro performances of nickel-free nitrogen containing stainless steels for orthopaedic applications

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      HNS; EIS; 316LVM; implants.

    • Abstract


      The aim of the present work was to study the in vitro corrosion resistance in Hank’s solution and biocompatibility of indigenized low-cost Ni-free nitrogen containing austenitic stainless steels (HNSs) and to compare with conventionally used 316L and 316LVM. The electrochemical behaviour was assessed using electrochemical impedance spectroscopy, potentiostatic polarization and scanning electron microscopy. The MTT assay [3-(4,5-dimethythiazol 2-yl)-2,5-diphenyltetrazolium bromide] was performed using Dalton’s lymphoma cell line for cytotoxicity evaluation and cell adhesion test. The resistance of surface film was raised by increasing nitrogen content in stainless steel (SS). The corrosion current density was decreased with increase in nitrogen content and corrosion potentials for HNS were observed to be more positive. Shallower and smaller pits were associated with HNS, indicating that nitrogen suppresses the pit formation. The HNS had higher cell proliferation and cell growth and it increases by increasing the nitrogen content. The surface wettability of the alloys was also investigated by water contact-angle measurements. The value of contact angles was found to decrease with increase in nitrogen content. This indicates that the hydrophilic character increases with increasing nitrogen content, which is further attributed to enhance the surface free energy that would be conducive to cell adhesion, which in turn increases the cell proliferation.

    • Author Affiliations


      Mohd Talha1 C K Behera1 O P Sinha1

      1. Centre of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.