• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/boms/037/06/1249-1253

    • Keywords

       

      SiC nanowires; nanocrystalline diamond; crystal growth; photoluminescence.

    • Abstract

       

      A sample and scalable synthetic strategy was developed for the fabrication of nanocrystalline SiC (nc-SiC) thin film. Thin sheet of nanocrystalline diamond was deposited on Si substrate by hot filamentassisted plasma-enhanced chemical vapour deposition system (HF-PECVD). Further, the resulting carbonbased sheet was heated at 1200 °C to allow a solid state reaction between C and Si substrate to form the SiC thin films. The synthesized films mainly consist of 𝛽-SiC nanowires with diameters of about 50 nm and tens of micrometers long. The nanowires axes lie along the [1 1 1] direction and possess a high density of planar defects. The 𝛽-SiC nanowires thin films exhibit the strong photoluminescence (PL) peak at a wavelength of 400 nm, which is significantly shifted to the blue compared with the reported PL results of SiC materials. The blue shift may be ascribed to morphology, quantum size confinement effects of the nanomaterials and abundant structure defects that existed in the nanowires.

    • Author Affiliations

       

      Zhang Enlei1 Wang Guosheng1 Long Xiaozhu1 Wang Zhumin1

      1. College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People’s Republic of China
    • Dates

       
  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.