• Effect of ethyl vanillin on ZnNi alloy electrodeposition and its properties

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Corrosion resistance; microhardness; X-ray diffraction; ZnNi alloy; electrodeposition; ethyl vanillin.

    • Abstract


      The bright ZnNi alloy coating on steel surface was prepared by elctrodepostion technique using brightener ethyl vanillin (EV). To know the influence of brightener on deposition and dissolution behaviour of ZnNi alloy, cyclic voltammetric studies were carried out. FT–IR spectroscopic evidence was given to confirm selective adsorption of brightener on steel surface. The brightener enhances current efficiency and throwing power of plating bath during coating. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses in presence of brightener confirmed the change in surface morphology, phase composition and preferred orientation of ZnNi coating. In presence of brightener, nickel content of the coating was reduced at higher current density and thickness. In addition, deposit properties like appearances, hardness, adherence, ductility and corrosion resistance of ZnNi alloy deposits were also improved in bright deposit. Simultaneously, effect of deposition current density and thickness on corrosion behaviour of coating was examined.

    • Author Affiliations


      K O Nayana1 T V Venkatesha1

      1. Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta 577 451, India
    • Dates

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.